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Peeling off an elastica from a smooth attractive substrate
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Using continuum mechanics, we study theoretically the unbinding of an inextensible rod with free ends
attracted by a smooth substrate and submitted to a vertical force. We use the elastica model in a medium-range
van der Waals potential. We numerically solve a nonlinear boundary value problem and obtain the force-
stretching relation at zero temperature. We obtain the critical force for which the rod unbinds from the substrate
as a function of three dimensionless parameters, and we find two different regimes of adhesion. We study
analytically the contact potential case as the van der Waals radius goes to zero.
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Adhesion and elasticity play an important role in biophys-  We consider an inextensible rod described by two param-
ics and in materials science from both the fundamental andters: «, the bending coefficient, and, its length. The at-
applied points of view 1]. The nanomanipulation of single tracting potential is described by two paramet&ks:the ad-
stiff polymer chains and single semiflexible biological mac-hesion constant, and, the van der Waals radius. As shown
romolecules can give insight into the mechanical propertiesn Fig. 1, we apply at one end of the rod a vertical foFce
of macromolecules such as DNA or Actin. Forces on thewe focus here on the case of a rod of very small diameter
scale of piconewtons have been measured with imposed deuch thatd<o. In contrary to the Hertz contact problem
formation on the scale of the nanometer with atomic forcg14], the cross section of the rod does not deform. Here, we
microscopesAFM's) [2] or optical tweezerE3]. Using these  assume that the local radius of curvature of the rod is much
experimental techniques the different mechanisms of adsorgarger than its diametat. This enables us to make use of the
tion between a macromolecule and a substrate can be invegtastica model. We assume that the interaction between the
tigated. On a larger scale and from a further perspective, theod and the semi-infinite nonpolar substrate can be modeled
process of dry adhesion between a lizard such as the gecky a medium-range van der Waals-like potenfisl). This
and a rough substrate involves a mechanism supported by thgtential combines a hard-core repulsive term and a
van der Waals molecular forc¢d]. A better understanding medium-range attractive term:
of this mechanism could lead to the creation of new type of
adhesive$5] or better design of nanorobotics adhesive ma- a\® [o)\3
chines. The physics behind the breaking of adhesive junc- VW)zW[(;) - (;) } D
tions involves many different molecular processes which de-

pend on the surface characteristics and on the nature of thgsre\ is the adhesion energy per unit length anthe van
intermolecular forces. It is therefore relevant to examineger waals radius. In this article, we shall neglect the effect of
simple models in which elasticity and intermolecular forcesnermal fluctuations. This is justified when the transverse
(adhesionplay an interconnected ro[€-13). In this article,  fjctyations of the rod?/L,, are small compared to its length
we examine the simple case of a free semiflexible rod dep ¢, thatL <L,=«/k,T whereL, is the persistence length

scribed by its bending energy, in adhesion with a smootlf15) Furthermore, we suppose that the adhesion energy is
nonpolar substrate. The rod with free ends is attracted by the

surface by a van der Waals—like force while a vertical
stretching force is applied at one of its ends. Using Euler’s
elastica mode]14], we study the force stretching relation of y
the ground statézero temperatujeof the inextensible rod.
We numerically measure the vertical deflection of the tip of
the rod on which the vertical force is applied. We obtain, as
a function of three dimensionless parameters, the force-
stretching relation and the critical force at which unbinding
takes place, by solving numerically a boundary value prob-
lem. We find two different regimes for the critical force for
low and high adhesion energy. Finally, we study the limiting
case of the contact potential by taking the limit of zero van
der Waals radius and we recover an analytical solution.

s=L

Attracting Substrate

*Electronic address: oyharcabal@irphe.univ-mrs.fr FIG. 1. Sketch of the rod attracted by the substrate and submit-
TElectronic address: frisch@irphe.univ-mrs.fr ted to a vertical force.
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FIG. 2. Force-stretching plot for four values
of w showing the diversity of solutions foe
=0.1. (a) w=6, (b) w=160, (c) w=300, and(d)
w=1000 obtained by numerical solutions of Egs.
(4). f is the intensity of the force applied at the
end of the rod, ang(1) is the vertical height of
the end of the rod measured from the substrate.

o« 200

© y(1) ()

large so thaWWw>k, T/ . This ensures that the rod is in strong energyE leads to the following system of nonlinear ordinary
adhesion with the substrate. The total energy of the systemquations:
is, then,
L. L 0+ vycos#=0, y=—, y=sinéd. (4)
E=X f #ds+ f V(y)ds- Fy(L), 2) N
2Jo 0 Here v(y)=w[(e/y)°-(e/y)®]. The boundary conditions are
where the first term is the bending energy of the rod, the#(0)=0, ¥(0)=0, #(1)=0, andy(1)=f. The unknown condi-
second term is the interaction with the substrate, and th&ons aref(0) andy(0). Equations(4) are solved efficiently
third term is the work of the applied force. Heseis the by a standard shooting method. In the absence of the stretch-
arclength along the rod, the dot is the derivative with respecing force (f=0), the only stable solution ig=y,=3"%¢
to the arclengthg is the angle between the tangent to the rodwhich corresponds to the minimum of the adhesion potential.
and thex axis, andF is the intensity of the vertical force that We then use a classical continuation methbd| in order to
is applied ats=L (Fig. 1). The full shape of the rod can be follow accurately the branch of solutions of E¢4). We first
reconstructed in the Cartesian frame of coordinates by thébcus our attention on the dependence of the hejght on
use of the geometrical relationgy=sin¢ds and Jdx  the force intensity. Figure 2 shows the force-stretching plot
=cos6 Js. We choose a set of dimensionless length a@ entf versusy(1)] for four values ofw at e=0.1. Figure 2a)
ergy in the following way:s=s/L, x=x/L, y=y/L, E  shows the force-stretching curve f@=6. It has a maximum
=EL/«. The Lagrange multiplien(s) has to be introduced for f=f, andy=y.. The critical forcef., is the unbinding
becauseg/ and 6 are mutually dependeft6]. After dropping  force, and it corresponds to the maximum force that can be
the overbars on the dimensionless variables, we obtain  applied to the rod without which it unbinds aryg, is the
N 1 o 5 critical height marking the border between two regions of
E:}J ézds+wf {(f) _(f) }ds different behavior. Fory(1) e[yy,Ye1] the system has a
2J), o L\Yy y springlike behavior and the force increases with displace-
1 ment, whereas for higher values ¢fl) it behaves like an
+J 9y - sin d]ds— fy(1). 3) antispring and the force decr_eas_es with displacement. It is
0 important to note that the antispring branches are mechani-
o2 _ R ) cally stable if the height is fixed. Figurest?2 and Zc) cor-
Herew=WL"/x, e=o/L, andf=FL*/« are the three dimen- e5nond to the typical behavior for intermediate valuewof
sionless parameters of the system. The boundary condition§ second maximum appears fé=f. and y=y. and of
at the free ends of the rod a#0)=0 andé(1)=0 since both  course a minimunf=f_, andy=y,,. In this regime four re-
ends of the rod are torque free. The minimization of thegions appear, passing alternatively from a springlike behav-
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FIG. 3. State diagram fo¢=0.1 in the nondi-

mensional(f,w) parameter space. The values of
the critical force are obtained by analyzing every
force-stretching plot obtained by numerical reso-
lution of Egs.(4).
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ior to an antispringlike behavior. The critical force corre- dependence of the unbinding force vergu&igure 5 shows
sponding to the unbinding force is now nié,f.3). In Fig.  the force-stretching curves for different valueseadbtained
2(d), which is representative of the high valueswf the by numerical resolution of Eq44). In the limit e—0, the
maximum(f,y.) disappears and consequently the unbind-numerical calculation of the solutions of Ed4) becomes
ing force isf. In order to evaluate the role of each param-stiff. As we decrease the value ef we find that the critical
eter, we made a quantitative phase diagtamw) of the sys-  force increases very rapidly as shown in Fig. 5. A log-log
tem as shown in Fig. 3. We also present a qualitative sketchlot of f. versuse on four decades reveals thitdiverges

of it on Fig. 4 for more clarity. The phase diagram showslike € *2 Furthermore, as shown in Fig. 3, ~w3* for
three different regions for this system. The upper redion small w. This result is verified fore=0.1 ande=0.01 (data

of Fig. 4 is the unbounded region. In the regi@), for each not shown here Using our numerical results
value off there are one or two values pf1) corresponding We find that the global scaling behavior for small is

to one or two shapes of the rod. In the grey regiBj there  fc~W>*/ €% If we express these scaling relations using
are four possible shapes of the rod for each value of the forckie dimensional parameters, we obtdip~W*"“x!4/g1/2,

f. As expected, there is a maximum valueytf) near 1 ~ Whereas for highw, f;~w so thatF;~W. Let us choose
+y, for which the solutions disappear as a consequence giome values for the physical parameters of a nanorod. A

the inextensibility of the rod18]. We now focus on the typical distance range for the van der Waals forcesris
~1 nm andR~1 nm (R is the radius of the rod For the

adhesion forcaV~ aR, herea~0.01 J m? is a typical ad-

fe3 hesion energy due to the van der Waals forces. The rigidity
of the rod, k, is directly related to its Young modulug
through x~YR'. For Y=10!°Pa, corresponding to the
Young modulus of a hair, we have=10"2°J m. Thus, for a
nanorod of length. ~ 1078 m, a typical critical force will be
of the order of ther,~ W8/4x4/ g1/2~ 10710 N. We will now
consider the contact potential case for which we shall pro-
N vide an analytical solution. There is now a discontinuity in

fo2 the adhesion potential =0. We can divide the rod in two
segments. The first one is straight and lies on the substrate.
This segment does not have curvature and contributes to the
bounded total energy through the adhesion energy. The second seg-

unbounded

fc1 bounded

©

ment is not in contact with the substrate and has only bend-
0 w ing energy. Thus, the energy functional can be written as
1
FIG. 4. Sketch of the state diagram fe=0.1 in the force- _1 _ _
adhesion(f,w) parameter space. The upper regi@y is the un- E= 2LO tFds wso = fy(d), 5)

bounded region in which there are no solution of Eg$. The (B)
and(C) regions are the bounded regions. In tBg region there are  wheres, is the length of the rod which is in contact with the
four solutions, and in théC) region there are at most two solutions. substrate. Followind16], the first variation of the energy
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FIG. 5. Numerical solutions of Eqs(4).
Force-stretching plot of versusy(1) for w=6:
dashed line=0.001, solid linee=0.01, and thick
solid line e=0.1.
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functional leads to a system of two equations:

6=—1f cog6), y=siné. (6)

The boundary conditions aré(s))=0 and 'a(so)zv“xv as

03

D) 90

S A——
fa(s) V2[w - f sin(6)]

S, (8)

for s> sy and #(s) =0 when 0<s<s,. We can now obtain the

shown by{6,16]. Solving these equations leads to the follow- full shape of the rod, the contact lengsf and the force-

ing relation forsy:
oL

_—
0

where sing(1) =w/f. The shape of the rod is given implicity
by

a0

V2[w - fsin(6)]’ @)

stretching relation by solving Eq$7) and(8). As shown in

Fig. 6, the force-stretching plot is monotonically decreasing
and the rod has an antispring behavior. In this case, the force
is infinite wheny(1) goes to zero since we are in presence of

a contact potential. Such a result is consistent with the limit
of e going to zero of the van der Waals model; see Fig. 5. As

a consequence of the antispring behavior, as we decrease the
force, the contact lengtk, diminishes until a critical force

150 T T T T T T
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FIG. 6. Theoretical force-stretching plot for
w=6 in the case of the contact potential obtained
by solving Eqs.(7) and (8). The force is infinite
for y(1)=0 andf,, is a lower limit.
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FIG. 7. Shape of the rod under stretching for
7 two values off for the contact potential obtained
by solving Egs.(7) and (8). Top: f=f,,=6.233.
Bottom: f=15.
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fm(w) is reached. This critical forcg, for which =0, is a
solution of the following equation:

6(1)
f —L =1 (9)
o VAw-fy,sin(6)]

compared the above results to those in the limiteD, and

we recover the solution of the contact potential in the limit of
€ going to zero. We hope that this work will motivate more
experimental work on the force-stretching measurements of
adhering macromolecules. It would be interesting to study
the limit d> o, which is more accessible experimentdllyis

Figure 7 shows two shapes of the rod corresponding to twthe diameter of the rodbut in this case the rod model would
different values of the applied force. These plots are obtainefave to be changed and the Hertz contact theory with adhe-

by the integration off(s). The bottom plot of Fig. 7 corre-
sponds taf =15, in this cases,> 0, while the top plot corre-

sponds tof =f,,

To summarize, we have studied the ground state of . N
semiflexible rod at zero temperature in a smooth adsorbi\r;\%f the region around the contact posgt Moreover, we sug-
potential as a function of three dimensionless parameters.
have solved the boundary value problem using a shootin
method, and we have found very different behaviors. De

pending on the values of the parameters, the rod can ha

sion should be include@7]. Our study does not take into
account the effect of the finite radius of the rod; complex
elastic deformations are expected around the contact gpint
(Jj\l/lolecular dynamics simulations are in progress for a study

est that it could be possible to study experimentally, using
an atomic force microscope or optical magnetic tweezers, the
Betachment of a semi-flexible biopolymdDNA or Actin)

strongly adsorbed on a substrate.

ve

mostly a springlike behavior or an antispring behavior. We We would like to thank Simona Bodea, Alberto Verga,

also have shown that the unbinding force scales ke
~W for high W and F.~W®4«4/ ¢/ for low W. We have

Marc Georgelin, Moktar Adda-Bedia, and Yves Pomeau, for
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