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Using continuum mechanics, we study theoretically the unbinding of an inextensible rod with free ends
attracted by a smooth substrate and submitted to a vertical force. We use the elastica model in a medium-range
van der Waals potential. We numerically solve a nonlinear boundary value problem and obtain the force-
stretching relation at zero temperature. We obtain the critical force for which the rod unbinds from the substrate
as a function of three dimensionless parameters, and we find two different regimes of adhesion. We study
analytically the contact potential case as the van der Waals radius goes to zero.
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Adhesion and elasticity play an important role in biophys-
ics and in materials science from both the fundamental and
applied points of viewf1g. The nanomanipulation of single
stiff polymer chains and single semiflexible biological mac-
romolecules can give insight into the mechanical properties
of macromolecules such as DNA or Actin. Forces on the
scale of piconewtons have been measured with imposed de-
formation on the scale of the nanometer with atomic force
microscopessAFM’sd f2g or optical tweezersf3g. Using these
experimental techniques the different mechanisms of adsorp-
tion between a macromolecule and a substrate can be inves-
tigated. On a larger scale and from a further perspective, the
process of dry adhesion between a lizard such as the gecko
and a rough substrate involves a mechanism supported by the
van der Waals molecular forcesf4g. A better understanding
of this mechanism could lead to the creation of new type of
adhesivesf5g or better design of nanorobotics adhesive ma-
chines. The physics behind the breaking of adhesive junc-
tions involves many different molecular processes which de-
pend on the surface characteristics and on the nature of the
intermolecular forces. It is therefore relevant to examine
simple models in which elasticity and intermolecular forces
sadhesiond play an interconnected rolef6–13g. In this article,
we examine the simple case of a free semiflexible rod de-
scribed by its bending energy, in adhesion with a smooth
nonpolar substrate. The rod with free ends is attracted by the
surface by a van der Waals–like force while a vertical
stretching force is applied at one of its ends. Using Euler’s
elastica modelf14g, we study the force stretching relation of
the ground stateszero temperatured of the inextensible rod.
We numerically measure the vertical deflection of the tip of
the rod on which the vertical force is applied. We obtain, as
a function of three dimensionless parameters, the force-
stretching relation and the critical force at which unbinding
takes place, by solving numerically a boundary value prob-
lem. We find two different regimes for the critical force for
low and high adhesion energy. Finally, we study the limiting
case of the contact potential by taking the limit of zero van
der Waals radius and we recover an analytical solution.

We consider an inextensible rod described by two param-
eters:k, the bending coefficient, andL, its length. The at-
tracting potential is described by two parameters:W, the ad-
hesion constant, ands, the van der Waals radius. As shown
in Fig. 1, we apply at one end of the rod a vertical forceF.
We focus here on the case of a rod of very small diameterd
such thatd,s. In contrary to the Hertz contact problem
f14g, the cross section of the rod does not deform. Here, we
assume that the local radius of curvature of the rod is much
larger than its diameterd. This enables us to make use of the
elastica model. We assume that the interaction between the
rod and the semi-infinite nonpolar substrate can be modeled
by a medium-range van der Waals-like potentialf1g. This
potential combines a hard-core repulsive term and a
medium-range attractive term:

Vsyd = WFSs

y
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y
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HereW is the adhesion energy per unit length ands the van
der Waals radius. In this article, we shall neglect the effect of
thermal fluctuations. This is justified when the transverse
fluctuations of the rodL2/Lp are small compared to its length
L so thatL,Lp=k /kbT whereLp is the persistence length
f15g. Furthermore, we suppose that the adhesion energy is
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FIG. 1. Sketch of the rod attracted by the substrate and submit-
ted to a vertical force.
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large so thatW.kbT/s. This ensures that the rod is in strong
adhesion with the substrate. The total energy of the system
is, then,

E =
k

2
E

0

L

u̇2ds+E
0

L

Vsydds− FysLd, s2d

where the first term is the bending energy of the rod, the
second term is the interaction with the substrate, and the
third term is the work of the applied force. Heres is the
arclength along the rod, the dot is the derivative with respect
to the arclength,u is the angle between the tangent to the rod
and thex axis, andF is the intensity of the vertical force that
is applied ats=L sFig. 1d. The full shape of the rod can be
reconstructed in the Cartesian frame of coordinates by the
use of the geometrical relations]y=sinu ]s and ]x
=cosu ]s. We choose a set of dimensionless length and en-

ergy in the following way: s̄=s/L, x̄=x/L, ȳ=y/L, Ē
=EL/k. The Lagrange multipliergssd has to be introduced
becausey andu are mutually dependentf16g. After dropping
the overbars on the dimensionless variables, we obtain
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Herew=WL2/k, e=s /L, and f =FL2/k are the three dimen-
sionless parameters of the system. The boundary conditions

at the free ends of the rod areu̇s0d=0 andu̇s1d=0 since both
ends of the rod are torque free. The minimization of the

energyE leads to the following system of nonlinear ordinary
equations:

ü + g cosu = 0, ġ =
]v
]y

, ẏ = sinu. s4d

Here vsyd=wfse /yd9−se /yd3g. The boundary conditions are

u̇s0d=0, gs0d=0, u̇s1d=0, andgs1d= f. The unknown condi-
tions areus0d and ys0d. Equationss4d are solved efficiently
by a standard shooting method. In the absence of the stretch-
ing force sf =0d, the only stable solution isy=y0=31/6e
which corresponds to the minimum of the adhesion potential.
We then use a classical continuation methodf17g in order to
follow accurately the branch of solutions of Eqs.s4d. We first
focus our attention on the dependence of the heightys1d on
the force intensityf. Figure 2 shows the force-stretching plot
ff versusys1dg for four values ofw at e=0.1. Figure 2sad
shows the force-stretching curve forw=6. It has a maximum
for f = fc1 and y=yc1. The critical forcefc1 is the unbinding
force, and it corresponds to the maximum force that can be
applied to the rod without which it unbinds andyc1 is the
critical height marking the border between two regions of
different behavior. Forys1dP fy0,yc1g the system has a
springlike behavior and the force increases with displace-
ment, whereas for higher values ofys1d it behaves like an
antispring and the force decreases with displacement. It is
important to note that the antispring branches are mechani-
cally stable if the height is fixed. Figures 2sbd and 2scd cor-
respond to the typical behavior for intermediate values ofw.
A second maximum appears forf = fc3 and y=yc3 and of
course a minimumf = fc2 andy=yc2. In this regime four re-
gions appear, passing alternatively from a springlike behav-

FIG. 2. Force-stretching plot for four values
of w showing the diversity of solutions fore
=0.1. sad w=6, sbd w=160, scd w=300, andsdd
w=1000 obtained by numerical solutions of Eqs.
s4d. f is the intensity of the force applied at the
end of the rod, andys1d is the vertical height of
the end of the rod measured from the substrate.
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ior to an antispringlike behavior. The critical force corre-
sponding to the unbinding force is now maxsfc1, fc3d. In Fig.
2sdd, which is representative of the high values ofw, the
maximumsfc1,yc1d disappears and consequently the unbind-
ing force is fc3. In order to evaluate the role of each param-
eter, we made a quantitative phase diagramsf ,wd of the sys-
tem as shown in Fig. 3. We also present a qualitative sketch
of it on Fig. 4 for more clarity. The phase diagram shows
three different regions for this system. The upper regionsAd
of Fig. 4 is the unbounded region. In the regionsCd, for each
value of f there are one or two values ofys1d corresponding
to one or two shapes of the rod. In the grey regionsBd, there
are four possible shapes of the rod for each value of the force
f. As expected, there is a maximum value ofys1d near 1
+y0 for which the solutions disappear as a consequence of
the inextensibility of the rodf18g. We now focus on the

dependence of the unbinding force versuse. Figure 5 shows
the force-stretching curves for different values ofe obtained
by numerical resolution of Eqs.s4d. In the limit e→0, the
numerical calculation of the solutions of Eqs.s4d becomes
stiff. As we decrease the value ofe, we find that the critical
force increases very rapidly as shown in Fig. 5. A log-log
plot of fc versuse on four decades reveals thatfc diverges
like e−1/2. Furthermore, as shown in Fig. 3,fc1,w3/4 for
small w. This result is verified fore=0.1 ande=0.01 sdata
not shown hered. Using our numerical results
we find that the global scaling behavior for smallw is
fc,w3/4/e1/2. If we express these scaling relations using
the dimensional parameters, we obtainFc,W3/4k1/4/s1/2,
whereas for highw, fc,w so thatFc,W. Let us choose
some values for the physical parameters of a nanorod. A
typical distance range for the van der Waals forces iss
,1 nm andR,1 nm sR is the radius of the rodd. For the
adhesion forceW,aR, herea,0.01 J m−2 is a typical ad-
hesion energy due to the van der Waals forces. The rigidity
of the rod, k, is directly related to its Young modulusY
through k,YR4. For Y=1010 Pa, corresponding to the
Young modulus of a hair, we havek=10−26 J m. Thus, for a
nanorod of lengthL,10−8 m, a typical critical force will be
of the order of theFc,W3/4k1/4/s1/2,10−10 N. We will now
consider the contact potential case for which we shall pro-
vide an analytical solution. There is now a discontinuity in
the adhesion potential aty=0. We can divide the rod in two
segments. The first one is straight and lies on the substrate.
This segment does not have curvature and contributes to the
total energy through the adhesion energy. The second seg-
ment is not in contact with the substrate and has only bend-
ing energy. Thus, the energy functional can be written as

E =
1

2
E

s0

1

u̇2ds− ws0 − fys1d, s5d

wheres0 is the length of the rod which is in contact with the
substrate. Followingf16g, the first variation of the energy

FIG. 3. State diagram fore=0.1 in the nondi-
mensionalsf ,wd parameter space. The values of
the critical force are obtained by analyzing every
force-stretching plot obtained by numerical reso-
lution of Eqs.s4d.

FIG. 4. Sketch of the state diagram fore=0.1 in the force-
adhesionsf ,wd parameter space. The upper regionsAd is the un-
bounded region in which there are no solution of Eqs.s4d. The sBd
andsCd regions are the bounded regions. In thesBd region there are
four solutions, and in thesCd region there are at most two solutions.
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functional leads to a system of two equations:

ü = − f cossud, ẏ = sinu. s6d

The boundary conditions areuss0d=0 and u̇ss0d=Î2w as
shown byf6,16g. Solving these equations leads to the follow-
ing relation fors0:

s0 = 1 −E
0

us1d ]u

Î2fw − f sinsudg
, s7d

where sinus1d=w/ f. The shape of the rod is given implicity
by

E
ussd

us1d ]u

Î2fw − f sinsudg
= 1 −s, s8d

for s.s0 andussd=0 when 0,s,s0. We can now obtain the
full shape of the rod, the contact lengths0, and the force-
stretching relation by solving Eqs.s7d and s8d. As shown in
Fig. 6, the force-stretching plot is monotonically decreasing
and the rod has an antispring behavior. In this case, the force
is infinite whenys1d goes to zero since we are in presence of
a contact potential. Such a result is consistent with the limit
of e going to zero of the van der Waals model; see Fig. 5. As
a consequence of the antispring behavior, as we decrease the
force, the contact lengths0 diminishes until a critical force

FIG. 5. Numerical solutions of Eqs.s4d.
Force-stretching plot off versusys1d for w=6:
dashed linee=0.001, solid linee=0.01, and thick
solid line e=0.1.

FIG. 6. Theoretical force-stretching plot for
w=6 in the case of the contact potential obtained
by solving Eqs.s7d and s8d. The force is infinite
for ys1d=0 and fm is a lower limit.
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fmswd is reached. This critical forcefm, for which s0=0, is a
solution of the following equation:

E
0

us1d ]u

Î2fw − fm sinsudg
= 1. s9d

Figure 7 shows two shapes of the rod corresponding to two
different values of the applied force. These plots are obtained
by the integration ofussd. The bottom plot of Fig. 7 corre-
sponds tof =15, in this cases0.0, while the top plot corre-
sponds tof = fm.

To summarize, we have studied the ground state of a
semiflexible rod at zero temperature in a smooth adsorbing
potential as a function of three dimensionless parameters. We
have solved the boundary value problem using a shooting
method, and we have found very different behaviors. De-
pending on the values of the parameters, the rod can have
mostly a springlike behavior or an antispring behavior. We
also have shown that the unbinding force scales likeFc
,W for high W andFc,W3/4k1/4/s1/2 for low W. We have

compared the above results to those in the limit ofe=0, and
we recover the solution of the contact potential in the limit of
e going to zero. We hope that this work will motivate more
experimental work on the force-stretching measurements of
adhering macromolecules. It would be interesting to study
the limit d@s, which is more accessible experimentallysd is
the diameter of the rodd, but in this case the rod model would
have to be changed and the Hertz contact theory with adhe-
sion should be includedf7g. Our study does not take into
account the effect of the finite radius of the rod; complex
elastic deformations are expected around the contact points0.
Molecular dynamics simulations are in progress for a study
of the region around the contact points0. Moreover, we sug-
gest that it could be possible to study experimentally, using
an atomic force microscope or optical magnetic tweezers, the
detachment of a semi-flexible biopolymersDNA or Actind
strongly adsorbed on a substrate.
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